If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+150t+152
We move all terms to the left:
0-(-16t^2+150t+152)=0
We add all the numbers together, and all the variables
-(-16t^2+150t+152)=0
We get rid of parentheses
16t^2-150t-152=0
a = 16; b = -150; c = -152;
Δ = b2-4ac
Δ = -1502-4·16·(-152)
Δ = 32228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32228}=\sqrt{4*8057}=\sqrt{4}*\sqrt{8057}=2\sqrt{8057}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{8057}}{2*16}=\frac{150-2\sqrt{8057}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{8057}}{2*16}=\frac{150+2\sqrt{8057}}{32} $
| 7(v-5)=-6v+43 | | x^2+72/(x^2)=17 | | 8^2x+4=16^x+1 | | x/6-12=2 | | 17-8x=-71 | | 4.4x=1.5 | | 8m-2-3=3 | | -6(1-n)/9=10(n+12)/12 | | 6=x10x= | | 8y^2-4y+2=0 | | C=16x^-1+4+0.001x^2 | | 7/15=x/62 | | a÷5+7=11 | | 4.4*x=198 | | 3x+2+7x-6=180 | | 2–2x=–2(x–1) | | -24=-4v=6-2 | | 8d 25=3d | | (9x^2-1)/x^2=0 | | (9+3i)*(2-10i)=0 | | 4x=6x=2(+3)+2 | | 24=x2x= | | 16+6n/9=10n+120/12 | | 56+24x=-9x | | 0.5(9.8+4x)=14.5 | | 5+3+x=12 | | 13t+6=22t+33 | | x+16=3x+16 | | -7-7x-28=33-8x | | n=3.14159 | | 5x=12x+44 | | 5x-16=x+-4 |